HL Paper 1

Consider the function $f:x
ightarrow \sqrt{rac{\pi}{4}-rccos x}.$

- (a) Find the largest possible domain of f.
- (b) Determine an expression for the inverse function, f^{-1} , and write down its domain.

A function f is defined by $f(x)=rac{3x-2}{2x-1},\;x\in\mathbb{R},\;x
eqrac{1}{2}.$

a. Find an expression for $f^{-1}(x)$. [4]

b. Given that f(x) can be written in the form $f(x) = A + rac{B}{2x-1}$, find the values of the constants A and B.

c. Hence, write down $\int \frac{3x-2}{2x-1} dx$. [1]

[2]

Write $\ln(x^2 - 1) - 2\ln(x + 1) + \ln(x^2 + x)$ as a single logarithm, in its simplest form.

Consider the equation $yx^2 + (y-1)x + (y-1) = 0$.

a.	Find the set of values of y for which this equation has real roots.	[4]
b.	Hence determine the range of the function $f:x ightarrow rac{x+1}{x^2+x+1}.$	[3]
c.	Explain why f has no inverse.	[1]

Let $f(x) = x^3 + ax^2 + bx + c$, where a, b, $c \in \mathbb{Z}$. The diagram shows the graph of y = f(x).

- a. Using the information shown in the diagram, find the values of a, b and c.
- b. If g(x) = 3f(x-2), (i) state the coordinates of the points where the graph of g intercepts the x-axis. [3]

[4]

[4]

(ii) Find the y-intercept of the graph of g.

The function f is defined by $f(x)=rac{3x}{x-2},\ x\in\mathbb{R},\ x
eq 2.$

a.	Sketch the graph of $y = \frac{1}{2}$	f(x)	, indicating clearly any asymptotes and points of intersection with the x and y axes.	
----	---------------------------------------	------	---	--

b.	Find an expression for $f^{-1}(x)$.	[4]
c.	Find all values of x for which $f(x) = f^{-1}(x)$.	[3]
d.	Solve the inequality $ f(x) < rac{3}{2}.$	[4]
e.	Solve the inequality $f(x) < rac{3}{2}.$	[2]

A function is defined by $h(x)=2{
m e}^x-rac{1}{{
m e}^x},\ x\in {\mathbb R}$. Find an expression for $h^{-1}(x)$.

The polynomial $P(x) = x^3 + ax^2 + bx + 2$ is divisible by (x + 1) and by (x - 2).

Find the value of a and of b, where $a, b \in \mathbb{R}$.

Consider the function f defined by $f(x)=x^2-a^2,\ x\in\mathbb{R}$ where a is a positive constant.

The function g is defined by $g(x) = x \sqrt{f(x)}$ for |x| > a.

a.i. Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes. [2]

$$y=f(x);$$

a.ii.Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes. [4]

$$y=rac{1}{f(x)};$$

a.iiiShowing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes. [2]

$$y=\Big|rac{1}{f(x)}\Big|.$$

[5]

[4]

[2]

[2]

b. Find $\int f(x) \cos x dx$.

1

c. By finding g'(x) explain why g is an increasing function.

The functions f and g are defined by $f(x)=2x+rac{\pi}{5},\ x\in\mathbb{R}$ and $g(x)=3\sin x+4,\ x\in\mathbb{R}.$

a. Show that
$$g\circ f(x)=3\sin\Bigl(2x+rac{\pi}{5}\Bigr)+4.$$
 [1]

b. Find the range of $g \circ f$.

c. Given that
$$g\circ f\left(rac{3\pi}{20}
ight)=$$
 7, find the next value of x , greater than $rac{3\pi}{20}$, for which $g\circ f(x)=$ 7. [2]

d. The graph of $y = g \circ f(x)$ can be obtained by applying four transformations to the graph of $y = \sin x$. State what the four transformations [4] represent geometrically and give the order in which they are applied.

Consider the functions $f(x)= an x, \ 0\leq \ x<rac{\pi}{2}$ and $g(x)=rac{x+1}{x-1}, \ x\in \mathbb{R}, \ x
eq 1.$

- a. Find an expression for $g\circ f(x)$, stating its domain.
- b. Hence show that $g \circ f(x) = \frac{\sin x + \cos x}{\sin x \cos x}$. [2]

c. Let $y = g \circ f(x)$, find an exact value for $\frac{dy}{dx}$ at the point on the graph of $y = g \circ f(x)$ where $x = \frac{\pi}{6}$, expressing your answer in the form [6] $a + b\sqrt{3}$, $a, b \in \mathbb{Z}$.

d. Show that the area bounded by the graph of $y = g \circ f(x)$, the x-axis and the lines x = 0 and $x = rac{\pi}{6}$ is $\ln\Big(1 + \sqrt{3}\Big)$. [6]

Consider the function $f(x)=rac{1}{x^2+3x+2},\ x\in\mathbb{R},\ x eq-2,\ x eq-1.$	
--	--

a.i. Express x^2+3x+2 in the form $(x+1)$	$(-h)^2 + k.$	[1]
		r. 1

a.ii.Factorize
$$x^2 + 3x + 2$$
. [1]

b. Sketch the graph of f(x), indicating on it the equations of the asymptotes, the coordinates of the *y*-intercept and the local maximum. [5]

c. Show that
$$\frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{x^2+3x+2}$$
. [1]

- d. Hence find the value of p if $\int_0^1 f(x) dx = \ln(p)$. [4]
- e. Sketch the graph of $y=f\left(\left| x
 ight|
 ight) .$
 - f. Determine the area of the region enclosed between the graph of y = f(|x|), the *x*-axis and the lines with equations x = -1 and x = 1. [3]

[2]

[3]

[2]

Let
$$p(x) = 2x^5 + x^4 - 26x^3 - 13x^2 + 72x + 36, \ x \in \mathbb{R}.$$

- a. For the polynomial equation p(x) = 0, state
 - (i) the sum of the roots;
 - (ii) the product of the roots.
- b. A new polynomial is defined by q(x) = p(x+4).

Find the sum of the roots of the equation q(x) = 0.

Let
$$y(x)=xe^{3x},\ x\in\mathbb{R}.$$

a.	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[2]
b.	Prove by induction that $rac{\mathrm{d}^n y}{\mathrm{d} x^n}=n3^{n-1}\mathrm{e}^{3x}+x3^n\mathrm{e}^{3x}$ for $n\in\mathbb{Z}^+.$	[7]
c.	Find the coordinates of any local maximum and minimum points on the graph of $y(x)$.	[5]
	Justify whether any such point is a maximum or a minimum.	
d.	Find the coordinates of any points of inflexion on the graph of $y(x)$. Justify whether any such point is a point of inflexion.	[5]
e.	Hence sketch the graph of $y(x)$, indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.	[2]

The quadratic equation $x^2 - 2kx + (k - 1) = 0$ has roots α and β such that $\alpha^2 + \beta^2 = 4$. Without solving the equation, find the possible values of the real number k.

A given polynomial function is defined as $f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$. The roots of the polynomial equation f(x) = 0 are consecutive terms of a geometric sequence with a common ratio of $\frac{1}{2}$ and first term 2.

[4]

[2]

- Given that $a_{n-1}=-63$ and $a_n=16$ find
- a. the degree of the polynomial;
- b. the value of a_0 .

```
Consider the function f, where f(x) = \arcsin(\ln x).
```

- (a) Find the domain of f.
- (b) Find $f^{-1}(x)$.

a. Show that $\frac{1}{\sqrt{n}+\sqrt{n+1}} = \sqrt{n+1} - \sqrt{n}$	\sqrt{n} where $n\geq 0,\;n\in\mathbb{Z}.$	[2]
b. Hence show that $\sqrt{2}-1 < rac{1}{\sqrt{2}}.$		[2]
	r=n	

C. Prove, by mathematical induction, that
$$\sum_{r=1}^{r=n} \frac{1}{\sqrt{r}} > \sqrt{n}$$
 for $n \ge 2, n \in \mathbb{Z}$. [9]

Let $g(x) = \log_5 |2 \log_3 x|$. Find the product of the zeros of g .

The functions f and g are defined by $f(x) = ax^2 + bx + c, \ x \in \mathbb{R}$ and $g(x) = p \sin x + qx + r, \ x \in \mathbb{R}$ where $a, \ b, \ c, \ p, \ q, \ r$ are real constants.

a.	Given that f is an even function, show that $b = 0$.	[2]
b.	Given that g is an odd function, find the value of r .	[2]
c.	The function h is both odd and even, with domain $\mathbb R.$	[2]

Find h(x).

Consider the polynomial $q(x) = 3x^3 - 11x^2 + kx + 8$.

- a. Given that q(x) has a factor (x 4), find the value of k.
- b. Hence or otherwise, factorize q(x) as a product of linear factors.

Consider the polynomial $P(z) = z^5 - 10z^2 + 15z - 6, \ z \in \mathbb{C}.$

The polynomial can be written in the form $P(z) = (z-1)^3(z^2+bz+c).$

Consider the function $q(x) = x^5 - 10x^2 + 15x - 6, \ x \in \mathbb{R}.$

- a. Write down the sum and the product of the roots of P(z) = 0.
 b. Show that (z 1) is a factor of P(z).
 c. Find the value of b and the value of c.
 d. Hence find the complex roots of P(z) = 0.
- e.i. Show that the graph of y = q(x) is concave up for x > 1. [3] e.ii.Sketch the graph of y = q(x) showing clearly any intercepts with the axes. [3]

The function f is defined as $f(x)=rac{3x+2}{x+1},\ x\in\mathbb{R},\ x
eq-1.$

Sketch the graph of y = f(x), clearly indicating and stating the equations of any asymptotes and the coordinates of any axes intercepts.

The cubic equation $x^3 + px^2 + qx + c = 0$, has roots $lpha,\ eta,\ \gamma$. By expanding $(x-lpha)(x-eta)(x-\gamma)$ show that

- a. (i) $p = -(\alpha + \beta + \gamma);$
 - (ii) $q = \alpha\beta + \beta\gamma + \gamma\alpha;$
 - (iii) $c = -\alpha \beta \gamma$.
- b. It is now given that p=-6 and q=18 for parts (b) and (c) below.

[2]

[2]

[5]

[3]

[3]

[3]

[3]

- In the case that the three roots α , β , γ form an arithmetic sequence, show that one of the roots is 2. (i)
- (ii) Hence determine the value of c.
- c. In another case the three roots α , β , γ form a geometric sequence. Determine the value of c.

Consider the following functions:

$$\begin{aligned} h(x) &= \arctan(x), \ x \in \mathbb{R} \\ g(x) &= \frac{1}{x}, \ x \in \mathbb{R}, \ x \neq 0 \end{aligned}$$
a. Sketch the graph of $y = h(x)$.
b. Find an expression for the composite function $h \circ g(x)$ and state its domain.
[2]
b. Find an expression for the composite function $h \circ g(x)$ and state its domain.
[2]
c. Given that $f(x) = h(x) + h \circ g(x)$,
(i) find $f'(x)$ in simplified form;
(ii) show that $f(x) = \frac{\pi}{2}$ for $x > 0$.
d. Nigel states that f is an odd function and Tom argues that f is an even function.
[3]

- (i) State who is correct and justify your answer.
- (ii) Hence find the value of f(x) for x < 0.

The function f is defined by $f(x)=2x^3+5, \ -2\leqslant x\leqslant 2.$

- a. Write down the range of f.
- b. Find an expression for $f^{-1}(x)$.
- c. Write down the domain and range of f^{-1} .

Consider the function defined by $f(x) = x\sqrt{1-x^2}$ on the domain $-1 \le x \le 1$.

a.	Show that f is an odd function.	[2]
b.	Find $f'(x)$.	[3]
c.	Hence find the x -coordinates of any local maximum or minimum points.	[3]
d.	Find the range of f .	[3]
e.	Sketch the graph of $y = f(x)$ indicating clearly the coordinates of the x-intercepts and any local maximum or minimum points.	[3]

[2]

[2]

[2]

- f. Find the area of the region enclosed by the graph of y=f(x) and the x-axis for $x\geq 0.$
- g. Show that $\int_{-1}^1 \left| x \sqrt{1-x^2} \right| \mathrm{d}x > \left| \int_{-1}^1 x \sqrt{1-x^2} \mathrm{d}x \right|.$

The function f is defined by

$$f(x) = egin{cases} 2x - 1, & x \leqslant 2 \ ax^2 + bx - 5, & 2 < x < 3 \end{cases}$$

where a , $b\in\mathbb{R}$.

a.	Given that f and its derivative, f' , are continuous for all values in the domain of f, find the values of a and b.	[6]
b.	Show that f is a one-to-one function.	[3]
c.	Obtain expressions for the inverse function f^{-1} and state their domains.	[5]

The function f is defined by

$$f(x)=\left\{egin{array}{ccc} 1-2x, & x\leq 2\ rac{3}{4}(x-2)^2-3, & x>2 \end{array}
ight.$$

a.	Determine whether or not f is continuous.	[2]
b.	The graph of the function g is obtained by applying the following transformations to the graph of f :	[4]
	a reflection in the <i>y</i> -axis followed by a translation by the vector $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$.	

Find g(x).

a. Sketch the graph of $y = \frac{1-3x}{x-2}$, showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes. [4]

[2]

[5]

b. Hence or otherwise, solve the inequality $\left|rac{1-3x}{x-2}
ight|<2.$

The function f is given by $f(x) = x e^{-x}$ $(x \ge 0)$.

a(i))((i))	Find an expression for $f'(x)$.	[3]
	(ii)	Hence determine the coordinates of the point A, where $f'(x) = 0$.	
b.	Find	an expression for $f''(x)$ and hence show the point A is a maximum.	[3]
c.	Find	the coordinates of B, the point of inflexion.	[2]
d.	The g	graph of the function g is obtained from the graph of f by stretching it in the x-direction by a scale factor 2.	[5]
		(i) Write down an expression for $g(x)$.	
		(ii) State the coordinates of the maximum C of g.	
		(iii) Determine the x-coordinates of D and E, the two points where $f(x) = g(x)$.	
e.	Skete	ch the graphs of $y = f(x)$ and $y = g(x)$ on the same axes, showing clearly the points A, B, C, D and E.	[4]
f.	Find	an exact value for the area of the region bounded by the curve $y = g(x)$, the x-axis and the line $x = 1$.	[3]

A rational function is defined by $f(x) = a + \frac{b}{x-c}$ where the parameters $a, b, c \in \mathbb{Z}$ and $x \in \mathbb{R} \setminus \{c\}$. The following diagram represents the graph of y = f(x).

[2]

[2]

Using the information on the graph,

a. state the value of a and the value of c;

b. find the value of *b*.

The equation $5x^3 + 48x^2 + 100x + 2 = a$ has roots r_1 , r_2 and r_3 . Given that $r_1 + r_2 + r_3 + r_1r_2r_3 = 0$, find the value of a.

Consider the equation $9x^3 - 45x^2 + 74x - 40 = 0$.

a.	Write down the numerical value of the sum and of the product of the roots of this equation.	[1]
b.	The roots of this equation are three consecutive terms of an arithmetic sequence.	[6]
	Taking the roots to be α , $\alpha \pm \beta$, solve the equation.	

Let $f(x) = x^4 + px^3 + qx + 5$ where p, q are constants.

The remainder when f(x) is divided by (x + 1) is 7, and the remainder when f(x) is divided by (x - 2) is 1. Find the value of p and the value of q.

The cubic polynomial $3x^3 + px^2 + qx - 2$ has a factor (x + 2) and leaves a remainder 4 when divided by (x + 1). Find the value of p and the value of q.

[2]

[4]

The quadratic equation $2x^2 - 8x + 1 = 0$ has roots α and β .

a. Without solving the equation, find the value of

- (i) $\alpha + \beta$;
- (ii) $\alpha\beta$.

b. Another quadratic equation $x^2+px+q=0,\ p,\ q\in\mathbb{Z}$ has roots $rac{2}{lpha}$ and $rac{2}{eta}.$

Find the value of p and the value of q.

Consider the following functions:

$$egin{aligned} f(x) &= rac{2x^2+3}{75}, \ x \geqslant 0 \ g(x) &= rac{|3x-4|}{10}, \ x \in \mathbb{R} \ . \end{aligned}$$

a.	State the range of f and of g .	[2]
b.	Find an expression for the composite function $f\circ g(x)$ in the form $rac{ax^2+bx+c}{3750}$, where $a,\ b$ and $c\in\mathbb{Z}$.	[4]
c.	(i) Find an expression for the inverse function $f^{-1}(x)$.	[4]
	(ii) State the domain and range of f^{-1} .	
d.	The domains of f and g are now restricted to $\{0, 1, 2, 3, 4\}$.	[6]
	By considering the values of f and g on this new domain, determine which of f and g could be used to find a probability distribution for a discrete random variable X , stating your reasons clearly.	
e.	Using this probability distribution, calculate the mean of X.	[2]

Consider the graphs of y=|x| and y=-|x|+b, where $b\in\mathbb{Z}^+.$

 a. Sketch the graphs on the same set of axes.
 [2]

 b. Given that the graphs enclose a region of area 18 square units, find the value of b.
 [3]

Consider the functions given below.

$$f(x)=2x+3$$
 $g(x)=rac{1}{x},x
eq 0$

a. (i) Find $(g \circ f)(x)$ and write down the domain of the function.

- (ii) Find $(f \circ g)(x)$ and write down the domain of the function.
- b. Find the coordinates of the point where the graph of y = f(x) and the graph of $y = (g^{-1} \circ f \circ g)(x)$ intersect.

Consider the function $f_n(x) = (\cos 2x)(\cos 4x)\dots(\cos 2^n x), \ n \in \mathbb{Z}^+.$

a. Determine whether f_n is an odd or even function, justifying your answer.

b. By using mathematical induction, prove that

$$f_n(x)=rac{\sin 2^{n+1}x}{2^n\sin 2x},\ x
eq rac{m\pi}{2}$$
 where $m\in\mathbb{Z}.$

[2]

[4]

[2]

[8]

[3]

c. Hence or otherwise, find an expression for the derivative of $f_n(x)$ with respect to x.

d. Show that, for n>1, the equation of the tangent to the curve $y=f_n(x)$ at $x=rac{\pi}{4}$ is $4x-2y-\pi=0.$ [8]

A function f is defined by
$$f(x) = \frac{2x-3}{x-1}, x \neq 1$$
.

- (a) Find an expression for $f^{-1}(x)$.
- (b) Solve the equation $\left|f^{-1}(x)\right| = 1 + f^{-1}(x)$.

The quadratic function $f(x) = p + qx - x^2$ has a maximum value of 5 when x = 3.

a.	Find the value of p and the value of q .	[4]
b.	The graph of $f(x)$ is translated 3 units in the positive direction parallel to the x-axis. Determine the equation of the new graph.	[2]

Consider a function f , defined by $f(x)=rac{x}{2-x}$ for $0\leqslant x\leqslant 1$.

- a. Find an expression for $(f \circ f)(x)$.
- b. Let $F_n(x) = \frac{x}{2^n (2^n 1)x}$, where $0 \le x \le 1$.

Use mathematical induction to show that for any $n\in\mathbb{Z}^+$

$$\underbrace{(f\circ f\circ\ldots\circ f)}_{n ext{ times}}(x)=F_n(x)$$

c. Show that $F_{-n}(x)$ is an expression for the inverse of F_n .

- d. (i) State $F_n(0)$ and $F_n(1)$.
 - (ii) Show that $F_n(x) < x$, given 0 < x < 1, $n \in \mathbb{Z}^+$.

(iii) For $n \in \mathbb{Z}^+$, let A_n be the area of the region enclosed by the graph of F_n^{-1} , the *x*-axis and the line x = 1. Find the area B_n of the region enclosed by F_n and F_n^{-1} in terms of A_n .

- a. State the set of values of a for which the function $x \mapsto \log_a x$ exists, for all $x \in \mathbb{R}^+$.
- b. Given that $\log_x y = 4\log_y x$, find all the possible expressions of y as a function of x.

When the function $q(x) = x^3 + kx^2 - 7x + 3$ is divided by (x + 1) the remainder is seven times the remainder that is found when the function is divided by (x + 2).

Find the value of k.

Solve $(\ln x)^2 - (\ln 2) (\ln x) < 2(\ln 2)^2$.

The roots of a quadratic equation $2x^2 + 4x - 1 = 0$ are α and β .

Without solving the equation,

- (a) find the value of $\alpha^2 + \beta^2$;
- (b) find a quadratic equation with roots α^2 and β^2 .

When the polynomial $3x^3 + ax + b$ is divided by (x - 2), the remainder is 2, and when divided by (x + 1), it is 5. Find the value of *a* and the value of *b*.

[8]

- [6]
- [6]

[2]

[6]

-

- a. Sketch on the same axes the curve $y = \left| rac{7}{x-4} \right|$ and the line y = x+2, clearly indicating any axes intercepts and any asymptotes.
- b. Find the exact solutions to the equation $x+2=\Big|rac{7}{x-4}\Big|.$

The diagram below shows a sketch of the graph of y = f(x).

a.	Sketch the graph of $y = f^{-1}(x)$ on the same axes.	[2]
b.	State the range of f^{-1} .	[1]
c.	Given that $f(x) = \ln(ax + b)$, $x > 1$, find the value of a and the value of b.	[4]

Find the set of values of x for which |x - 1| > |2x - 1|.

Let
$$f(x)=rac{4}{x+2},\ x
eq -2 ext{ and } g(x)=x-1.$$

If $h = g \circ f$, find

- (a) h(x);
- (b) $h^{-1}(x)$, where h^{-1} is the inverse of h.

[5]

a.	Show that $f(x) > 1$ for all $x > 0$.	[3]
b.	Solve the equation $f(x) = 4$.	[4]

a. (i) Express each of the complex numbers z₁ = √3 + i, z₂ = -√3 + i and z₃ = -2i in modulus-argument form. [9]
(ii) Hence show that the points in the complex plane representing z₁, z₂ and z₃ form the vertices of an equilateral triangle.

[9]

[2]

[5]

(iii) Show that $z_1^{3n} + z_2^{3n} = 2z_3^{3n}$ where $n \in \mathbb{N}$.

The function f is given by $f(x) = \frac{3^x + 1}{3^x - 3^{-x}}$, for x > 0.

- b. (i) State the solutions of the equation $z^7 = 1$ for $z \in \mathbb{C}$, giving them in modulus-argument form.
 - (ii) If w is the solution to $z^7 = 1$ with least positive argument, determine the argument of 1 + w. Express your answer in terms of π .
 - (iii) Show that $z^2 2z \cos\left(\frac{2\pi}{7}\right) + 1$ is a factor of the polynomial $z^7 1$. State the two other quadratic factors with real coefficients.

Given the complex numbers $z_1 = 1 + 3i$ and $z_2 = -1 - i$.

- a. Write down the exact values of $|z_1|$ and $\arg(z_2)$.
- b. Find the minimum value of $|z_1 + \alpha z_2|$, where $\alpha \in \mathbb{R}$.

The same remainder is found when $2x^3 + kx^2 + 6x + 32$ and $x^4 - 6x^2 - k^2x + 9$ are divided by x + 1. Find the possible values of k.

When $3x^5 - ax + b$ is divided by x - 1 and x + 1 the remainders are equal. Given that a , $b \in \mathbb{R}$, find

- (a) the value of a;
- (b) the set of values of b.

(a) Express the quadratic $3x^2 - 6x + 5$ in the form $a(x+b)^2 + c$, where $a, b, c \in \mathbb{Z}$.

(b) Describe a sequence of transformations that transforms the graph of $y = x^2$ to the graph of $y = 3x^2 - 6x + 5$.

The function f is defined by $f(x) = \frac{1}{x}, \ x \neq 0.$

The graph of the function y = g(x) is obtained by applying the following transformations to

the graph of y = f(x):

a translation by the vector $\begin{pmatrix} -3\\ 0 \end{pmatrix}$; a translation by the vector $\begin{pmatrix} 0\\ 1 \end{pmatrix}$;

- a. Find an expression for g(x).
- b. State the equations of the asymptotes of the graph of g.
- a. Factorize $z^3 + 1$ into a linear and quadratic factor.
- b. Let $\gamma = rac{1+\mathrm{i}\sqrt{3}}{2}$.
 - (i) Show that γ is one of the cube roots of -1.
 - (ii) Show that $\gamma^2 = \gamma 1$.
 - (iii) Hence find the value of $(1 \gamma)^6$.

The following diagram shows the graph of $y=rac{\left(\ln x
ight)^2}{x},\;x>0.$

[2]

[2]

[2]

[9]

[1]

[5]

[7]

The region R is enclosed by the curve, the *x*-axis and the line x = e.

Let $I_n=\int_1^{\mathrm{e}}rac{\left(\ln x
ight)^n}{x^2}\mathrm{d}x,\ n\in\mathbb{N}.$

- a. Given that the curve passes through the point (a, 0), state the value of a.
- b. Use the substitution $u = \ln x$ to find the area of the region R.
- c. (i) Find the value of I_0 .
 - (ii) Prove that $I_n=rac{1}{\mathrm{e}}+nI_{n-1},\ n\in\mathbb{Z}^+.$
 - (iii) Hence find the value of I_1 .

The function f is defined, for $-rac{\pi}{2}\leqslant x\leqslant rac{\pi}{2}$, by $f(x)=2\cos x+x\sin x$.

- a. Determine whether f is even, odd or neither even nor odd.
- b. Show that f''(0) = 0.
- c. John states that, because f''(0) = 0, the graph of *f* has a point of inflexion at the point (0, 2). Explain briefly whether John's statement is [2] correct or not.

a. Sketch the graph of
$$y = \left| \cos\left(\frac{x}{4}\right) \right|$$
 for $0 \le x \le 8\pi$.
b. Solve $\left| \cos\left(\frac{x}{4}\right) \right| = \frac{1}{2}$ for $0 \le x \le 8\pi$.
[3]

The functions *f* and *g* are defined as:

$$egin{aligned} f(x) &= \mathrm{e}^{x^2}, \ x \geqslant 0 \ g(x) &= rac{1}{x+3}, \ x
eq -3. \end{aligned}$$

(a) Find h(x) where $h(x) = g \circ f(x)$.

- (b) State the domain of $h^{-1}(x)$.
- (c) Find $h^{-1}(x)$.

When $f(x) = x^4 + 3x^3 + px^2 - 2x + q$ is divided by (x - 2) the remainder is 15, and (x + 3) is a factor of f(x).

Find the values of p and q.

Solve the following equations:

[3]

[2]

(a)
$$\log_2(x-2) = \log_4(x^2 - 6x + 12);$$

(b) $x^{\ln x} = e^{(\ln x)^3}$.

The function f is defined by $f\left(x
ight)=rac{ax+b}{cx+d},$ for $x\in\mathbb{R},\,\,x
eq-rac{d}{c}.$

The function g is defined by $g\left(x
ight)=rac{2x-3}{x-2},\,\,x\in\mathbb{R},\,\,x
eq 2$

a. Find the inverse function f^{-1} , stating its domain. [5]

b.i.Express g(x) in the form $A + \frac{B}{x-2}$ where A, B are constants. [2]

b.iiSketch the graph of $y = g\left(x
ight)$. State the equations of any asymptotes and the coordinates of any intercepts with the axes.

c. The function *h* is defined by $h(x) = \sqrt{x}$, for $x \ge 0$. [4]

[3]

[8]

State the domain and range of $h \circ g$.

The function f is defined by $f(x) = \frac{1}{4x^2 - 4x + 5}$.

a. Express $4x^2 - 4x + 5$ in the form $a(x - h)^2 + k$ where $a, h, k \in \mathbb{Q}$. [2]

b. The graph of $y = x^2$ is transformed onto the graph of $y = 4x^2 - 4x + 5$. Describe a sequence of transformations that does this, making the [3] order of transformations clear.

c. Sketch the graph of y = f(x).
d. Find the range of f.

e. By using a suitable substitution show that $\int f(x) dx = \frac{1}{4} \int \frac{1}{u^2 + 1} du.$ [3] f. Prove that $\int_1^{3.5} \frac{1}{4x^2 - 4x + 5} dx = \frac{\pi}{16}.$ [7]

The function f is defined by $f(x) = \frac{2x-1}{x+2}$, with domain $D = \{x : -1 \le x \le 8\}$.

Express $f(x)$ in the form $A + \frac{B}{x+2}$, where A and $B \in \mathbb{Z}$.	[2]
---	-----

b.	Hence show that $f'(x) > 0$ on D .	[2]
c.	State the range of <i>f</i> .	[2]

- d. (i) Find an expression for $f^{-1}(x)$.
 - (ii) Sketch the graph of y = f(x), showing the points of intersection with both axes.
 - (iii) On the same diagram, sketch the graph of y = f'(x).

- e. (i) On a different diagram, sketch the graph of y = f(|x|) where $x \in D$.
 - (ii) Find all solutions of the equation $f(|x|) = -\frac{1}{4}$.

The function f is defined as $f(x) = e^{3x+1}, x \in \mathbb{R}$.

a. (i)	Find $f^{-1}(x).$		[4]

- (ii) State the domain of f^{-1} .
- b. The function g is defined as $g(x) = \ln x, x \in \mathbb{R}^+$. The graph of y = g(x) and the graph of $y = f^{-1}(x)$ intersect at the point P.

Find the coordinates of P.

c. The graph of y=g(x) intersects the x-axis at the point Q.

Show that the equation of the tangent T to the graph of y = g(x) at the point Q is y = x - 1.

d. A region R is bounded by the graphs of y = g(x), the tangent T and the line x = e.

Find the area of the region R.

- e. A region R is bounded by the graphs of y = g(x), the tangent T and the line x = e.
 - (i) Show that $g(x) \leq x-1, \ x \in \mathbb{R}^+.$
 - (ii) By replacing x with $rac{1}{x}$ in part (e)(i), show that $rac{x-1}{x} \leq g(x), \; x \in \mathbb{R}^+.$

The random variable X has probability density function f where

$$f(x) = egin{cases} kx(x+1)(2-x), & 0\leqslant x\leqslant 2\ 0, & ext{otherwise} \ . \end{cases}$$

a. Sketch the graph of the function. You are not required to find the coordinates of the maximum.

b. Find the value of k.

Let $f(x)=rac{2-3x^5}{2x^3},\;x\in\mathbb{R},\;x
eq 0.$

a. The graph of y = f(x) has a local maximum at A. Find the coordinates of A.

b.i.Show that there is exactly one point of inflexion, B, on the graph of y = f(x).

b.ii.The coordinates of B can be expressed in the form $B(2^a, b \times 2^{-3a})$ where $a, b \in \mathbb{Q}$. Find the value of a and the value of b.

[3]

[5]

[6]

[1]

[5]

[5]

[5]

[3]

c. Sketch the graph of y = f(x) showing clearly the position of the points A and B.

Shown below are the graphs of y = f(x) and y = g(x).

If $(f \circ g)(x) = 3$, find all possible values of *x*.

The function f is defined on the domain $x \geqslant 0$ by $f(x) = \mathrm{e}^x - x^\mathrm{e}$.

a.	(i)	Find an expression for $f'(x)$.	[3]
	(ii)	Given that the equation $f'(x) = 0$ has two roots, state their values.	
b.	Skete	ch the graph of f , showing clearly the coordinates of the maximum and minimum.	[3]
c.	Henc	be show that $\mathrm{e}^{\pi} > \pi^{\mathrm{e}}$.	[1]

The function f is defined on the domain $\left[0, \ rac{3\pi}{2}
ight]$ by $f(x)=e^{-x}\cos x$.

- a. State the two zeros of *f* . [1]
- b. Sketch the graph of f.
- c. The region bounded by the graph, the x-axis and the y-axis is denoted by A and the region bounded by the graph and the x-axis is denoted by [7]

B. Show that the ratio of the area of A to the area of B is

[1]

$$\frac{e^{\pi}\left(e^{\frac{\pi}{2}}+1\right)}{e^{\pi}+1}.$$

The diagram below shows the graph of the function y=f(x) , defined for all $x\in\mathbb{R},$ where b>a>0 .

Consider the function $g(x) = \frac{1}{f(x-a)-b}$.

- a. Find the largest possible domain of the function g.
- b. On the axes below, sketch the graph of y = g(x). On the graph, indicate any asymptotes and local maxima or minima, and write down their [6] equations and coordinates.

Given that $f(x)=1+\sin x,\ 0\leqslant x\leqslant rac{3\pi}{2},$

a. sketch the graph of f;

c. find the volume of the solid formed when the graph of f is rotated through 2π radians about the x-axis.

[1]

[1] [4] a. Sketch the graphs of $y=rac{x}{2}+1$ and y=|x-2| on the following axes.

b. Solve the equation
$$rac{x}{2}+1=|x-2|.$$

A function is defined as $f(x) = k\sqrt{x}$, with k > 0 and $x \ge 0$.

- (a) Sketch the graph of y = f(x).
- (b) Show that *f* is a one-to-one function.
- (c) Find the inverse function, $f^{-1}(x)$ and state its domain.
- (d) If the graphs of y = f(x) and $y = f^{-1}(x)$ intersect at the point (4, 4) find the value of k.

(e) Consider the graphs of y = f(x) and $y = f^{-1}(x)$ using the value of k found in part (d).

- (i) Find the area enclosed by the two graphs.
- (ii) The line x = c cuts the graphs of y = f(x) and $y = f^{-1}(x)$ at the points P and Q respectively. Given that the tangent to y = f(x) at

point P is parallel to the tangent to $y = f^{-1}(x)$ at point Q find the value of c.

The graph of a polynomial function f of degree 4 is shown below.

[4]

A.aGiven that
$$(x + \mathrm{i} y)^2 = -5 + 12\mathrm{i}, \ x, \ y \in \mathbb{R}$$
. Show that

(i) $x^2 - y^2 = -5$; (ii) xy = 6. A.bHence find the two square roots of -5+12i . [5] A.cFor any complex number z , show that $(z^*)^2 = (z^2)^*$. [3] A.dHence write down the two square roots of -5 - 12i. [2] B.aExplain why, of the four roots of the equation f(x) = 0, two are real and two are complex. [2] B.bThe curve passes through the point (-1, -18) . Find f(x) in the form [5] $f(x)=(x-a)(x-b)(x^2+cx+d), ext{ where } a, \ b, \ c, \ d\in\mathbb{Z}$. B.cFind the two complex roots of the equation f(x) = 0 in Cartesian form. [2] B.dDraw the four roots on the complex plane (the Argand diagram). [2] B.eExpress each of the four roots of the equation in the form $r e^{i\theta}$. [6]

[2]

The graph of $y = \frac{a+x}{b+cx}$ is drawn below.

(a) Find the value of *a*, the value of *b* and the value of *c*.

(b) Using the values of *a*, *b* and *c* found in part (a), sketch the graph of $y = \left|\frac{b+cx}{a+x}\right|$ on the axes below, showing clearly all intercepts and asymptotes.

The graph below shows y = f(x) , where $f(x) = x + \ln x$.

(a) On the graph below, sketch the curve $y = f^{-1}(x)$.

(b) Find the coordinates of the point of intersection of the graph of y = f(x) and the graph of $y = f^{-1}(x)$.

Consider the function $f(x) = rac{\ln x}{x}$, $0 < x < \mathrm{e}^2$.

- a. (i) Solve the equation f'(x) = 0.
 - (ii) Hence show the graph of f has a local maximum.
 - (iii) Write down the range of the function f.
- b. Show that there is a point of inflexion on the graph and determine its coordinates.
- c. Sketch the graph of y = f(x), indicating clearly the asymptote, x-intercept and the local maximum.

d. Now consider the functions $g(x) = \frac{\ln|x|}{x}$ and $h(x) = \frac{\ln|x|}{|x|}$, where $0 < x < e^2$. [6]

[5]

[5]

[3]

- (i) Sketch the graph of y = g(x).
- (ii) Write down the range of g.
- (iii) Find the values of x such that h(x) > g(x).

The diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = 2.

- a. Sketch the graph of $y = \frac{1}{f(x)}$.
- b. Sketch the graph of y = x f(x).

[3]

[3]

- a. (i) Sketch the graphs of y = sin x and y = sin 2x, on the same set of axes, for 0 ≤ x ≤ π/2. [9]
 (ii) Find the x-coordinates of the points of intersection of the graphs in the domain 0 ≤ x ≤ π/2. (iii) Find the area enclosed by the graphs.
- b. Find the value of $\int_0^1 \sqrt{\frac{x}{4-x}} dx$ using the substitution $x = 4\sin^2\theta$. [8]
- c. The increasing function f satisfies f(0) = 0 and f(a) = b, where a > 0 and b > 0. [8]
 - (i) By reference to a sketch, show that $\int_0^a f(x) dx = ab \int_0^b f^{-1}(x) dx$.
 - (ii) **Hence** find the value of $\int_0^2 \arcsin\left(\frac{x}{4}\right) dx$.

The diagram below shows a solid with volume V, obtained from a cube with edge a > 1 when a smaller cube with edge $\frac{1}{a}$ is removed.

Let
$$x = a - \frac{1}{a}$$

- (a) Find V in terms of x.
- (b) Hence or otherwise, show that the only value of a for which V = 4x is $a = \frac{1+\sqrt{5}}{2}$.

The graph of y = f(x) is shown below, where A is a local maximum point and D is a local minimum point.

a. On the axes below, sketch the graph of $y = \frac{1}{f(x)}$, clearly showing the coordinates of the images of the points A, B and D, labelling them A', [3] B', and D' respectively, and the equations of any vertical asymptotes.

b. On the axes below, sketch the graph of the derivative y = f'(x), clearly showing the coordinates of the images of the points A and D, [3] labelling them A" and D" respectively.

The graphs of y = |x + 1| and y = |x - 3| are shown below.

a. Draw the graph of y = f(x) on the blank grid below.

b. Hence state the value of

- (i) f'(-3);(ii) f'(2.7);(iii) $\int_{-3}^{-2} f(x) dx.$